CONTOH SOAL DAN PEMBAHASAN GHS_1: KONSEP GETARAN DAN GAYA PEMULIH

Konsep Getaran.



Getaran adalah gerak bolak-balik benda di sekitar titik setimbang. Contoh gerak bandul/ ayunan matematis, gerak naik-turun suatu beban yang tergantung pada suatu pegas, senar gitar dipetik dan lain-lain.

Konsep Satu (1) Getaran



Pada Bandul, Jika awal gerakan dari posisi A, maka 1 getaran = gerakan dari A-B-C-B-A. Pada pegas Jika awal gerakan dari posisi A, maka 1 getaran = gerakan dari A-B-C-D-E.


Contoh Soal Getaran:

perhatikan Gambar tiga kondisi pegas berikut ini!

Tiga kondisi beban pada pegas: B titik tertinggi, A titik diam/ setimbang, C titik terendah

Jika awal gerakan adalah titik A arahnya ke bawah. Maka satu getaran awal pada pegas itu adalah .....
a. A-C-B-A-C                  
b. A-B-A-C-A                  
c. A-C-A-B-A
d. B-C-A-B-A
e. C-A-B-A-C

Jawab:

Karena awal gerak dimulai dari kondisi A ke bawah, maka urutan kondisi satu getaran awal dari pegas tersebut adalah A-B-A-C-A (b)

Definisi Gerak Harmonik Sederhana

Adalah gerak bolak-balik benda di sekitar titik setimbang dengan simpangan terjauh/ amplitudo ( jarak terjauh beban/partikel terhadap titik diam/ setimbangnya) waktu satu getarannya sama/ tidak berubah.

Gaya Pemulih (\(F_p\))

Gaya pemulih \(F_p\) adalah gaya yang membuat sistem benda bergetar harmonik. Arah gaya pemulih selalu berlawanan dengan arah simpangan beban.

Pada Pegas



\(F_p = - k.x \) atau \(F_p = - k.y \)     ....(1)


Dengan: \(F_p\) = gaya pemulih (N), \(k\) = konstanta elastis/tetapan gaya (N.m\(^{-1}\)), \(x \) = Jarak simpangan getar (getaran horizontal/ mendatar), \(y \) = Jarak simpangan getar (getaran vertikal).


Pada bandul/ ayunan matematis



\(F_p = - m.g.sin \theta \)      ....(2)

Dengan: \(m\) = massa beban (kg), \(g\) = percepatan gravitasi (m.s\(^{-2}\)), \(\theta \) = sudut simpangan beban terhadap garis titik setimbang.

Contoh 1 Gaya Pemulih (Pada Pegas): 

Sebuah beban bermassa 200 gr terhubung dengan pegas yang memiliki konstanta elastis 200 N.m\(^{-1}\). Beban tersebut ditarik mendatar lalu kemudian dilepaskan, akibatnya beban bergerak bolak-balik dengan dengan simpangan terjauh sebesar 10 cm. Maka,

I. Saat beban berjarak 4 cm di kiri titik setimbang, gaya pemulihnya adalah 8 N arahnya ke kanan

II. Saat beban tepat di titik setimbang, gaya pemulihnya bernilai maksimum

III. Nilai maksimum gaya pemulihnya adalah 20 N

IV. Jika posisi beban di kanan titik setimbang dan beban bergerak ke kanan, maka gaya       pemulihnya adalah ke kanan.


Pernyataan yang bebar adalah ....
a.     I, II dan III                   
b.     I dan III                   
c.     II dan IV
d.    IV saja
e.    Semua benar

Penyelesaian

Diketahui: \(m\) = 200 gr,    \(k\) = 200 N.m\(^{-1}\),    A = 10 cm = 10\(^{-1}\) m

mari periksa tiap pernyataan:


Pernyataan I.

Saat \(x\) = - 4 cm = \(-4 \times 10^{-2}\) m; tanda (-) artinya beban di kiri titik setimbang. \(F_p = ... ?\) \(F_p = - k.x \) = \(F_p = - 200 \times (- 4 \times 10^{-2}) \) = \( F_p = + 8\) N. Tanda \(+\) artinya arah gaya ke kanan.

\(\Rightarrow\) (pernyataan I betul)


Pernyataan II.

Saat beban tepat di titik setimbang, artinya \(x = 0\) cm, maka \(F_p = - 200 \times 0 = 0 \) (minimum) 

\(\Rightarrow\) (pernyataan II salah)


Pernyataan III.

Gaya pemulih maksimum terjadi saat simpangan maksimum \(x_{maks} = 10^{-1}\) m


\(F_{p-maks} = |- k \times A| = 200 \times 10^{-1}\)

\(F_{p-maks} = - 20 \) N

\(\Rightarrow\) (pernyataan III betul)


Pernyataan IV.

Arah gaya pemulih berlawanan dengan posisi beban terhadap titik setimbanganya, karena posisi beban di kanan titik setimbang, maka arah gaya pemulih adalah ke kiri.

\(\Rightarrow\) (pernyataan IV salah)


Berdasarkan uraian jawaban, maka pilihan yang benar adalah pernyataan I dan III (B).

Contoh II gaya pemulih (Pada Bandul).

Sebuah bola bermassa 300 gr diikatkan pada sebuah tali yang panjangnya \(\pi^2 \times 10^{-1}\) m yang telah digantung pada suatu penyangga. Bola lalu ditarik dengan sudut simpang sejauh \(30^o\) lalu kemudian dilepaskan sehingga bola bergerak bolak-balik, tentukan:
a. gaya pemulih maksimum            
b. gaya pemulih saat sudut simpangannya \(15^o\) (diketahui \(\sin 15^o = 0,26\))

Penyelesaian:
diketahui: \(m = 300\) gr = \(0,3\) Kg,    \(l = \pi^2 \times 10^1\) m,    \(\theta_{maks} = 30^o\)
ditanyakan dan dijawab:

a. \(Fp_{maks} = .....?\)

Jawab:

\(F_p = - m.g.sin \theta \)

\(F_{pmaks} = - m.g.sin \theta_{maks} \)

\(F_{pmaks} = - 0,3 \times 10 \times sin 30 \)

\(F_{pmaks} = - 3 \times {1 \over 2}\)

\(F_{pmaks} = - 1,5\) N.

b. \(Fp = .....?\)  saat \(\theta = 15^o\)

Jawab:

\(Fp = - 0,3 \times 10 \times sin 15 \)

\(Fp  = - 3 \times 0,26 \)

\(Fp = 0,78\) N


Post a Comment

Previous Post Next Post